MODELS WITH FEW ISOMORPHIC EXPANSIONS

BY

A. LITMAN AND S. SHELAH*

ABSTRACT

We shall characterize the countable models M, with only countably many expansions by a one place predicate.

The theorem we shall prove here is:

THEOREM 1. *Let M be a countable model, then the following conditions are equivalent:*

(P1) *the number of* (M, P) $(P \subseteq |M|)$ *up to isomorphism is* \aleph_0 *.*

(P2) *the number of* (M, P) $(P \subseteq |M|)$ *up to isomorphism is* $\langle 2^{\aleph_0} \rangle$.

(P3) *there are finite models,* N_0 , N_1 *such that M is a reduction of a definable expansion of* $N_0 + \sum_{n \leq w} N_1$. (See Definition 0 for the definition of sum of models.)

The consideration of condition (P1) was suggested by Stavi [6], when investigating whether in a Fraenkel-Mostowski model (of set theory) the free Boolean algebra generated by the atoms is a set. He asked whether the number of (M, P) ($P \subseteq |M|$) up to isomorphism can be \mathbb{N}_1 and $\mathbb{N}_1 < 2^{k_0}$ -- so the answer is negative.

Clearly if we replace one-place predicate by a two-place predicate, the number of (M, P) is always 2^{μ_0} .

PROBLEM. For a model M of cardinality λ , what can be $|\{(M, P)| \cong : P \subset$ $|M|$ and is there a characterization similar to Theorem 1?

Our method is somewhat similar to Shelah [4], and the result was proved by Shelah and announced in [5]. Then Litman shortened the proof by half using the same technique.

^{*} The second author is thankful for NSF Grant 43901, by which he was partially supported. Received April 30, 1975 and in revised form November 29, 1976.

DEFINITION 0. (A) Let $\{M_i | i \in I\}$ be an indexed family of models in the same language L such that

1) The models $\{M_i | i \in I\}$ have disjoint domains.

2) L contains no functions or constants.

We define $M = \sum_{i \in I} M_i$, where M is a model of the same language L, the domain of M is the union of the domains of $\{M_i | i \in I\}$ and for any atomic relation R, $M = R$ (a_1, \dots, a_n) iff a_1, \dots, a_n all belong to the same model, say M_i , and $M_j = R(a_1, \cdots a_n).$

(B) For two models M_1 , M_2 define $M_1 + M_2 = \sum_{i \in \{1,2\}} M_i$.

PROOF OF THEOREM 1. It is clear that $(P3) \Rightarrow (P1) \Rightarrow (P2)$, so from now on we shall assume (P2), and eventually prove (P3), by a series of observations.

Let $|M|$ be the universe of M, a, b, c, elements of $|M|$, \bar{a} , \bar{b} , \bar{c} a finite sequence of such elements. Let L be the first-order language associated with M .

 $\text{tp}(a_1,\dots,a_n) = \{\varphi(x_1,\dots,x_n) | M \models \varphi(a_1,\dots,a_n), \varphi \text{ contains no parameters}\}.$

We shall not distinguich strictly between a sequence \bar{a} and its range.

OBSERVATION 1. Any expansion of M by finitely many individual constants satisfies conditions (P2).

The proof is trivial.

DEFINITION 1. $\langle a_1, a_2, \cdots, a_n \rangle \cong (b_1, b_2, \cdots, b_n)$ iff $\langle M, a_1, a_2, \cdots, a_n \rangle \cong$ $\langle M, b_1, b_2, \cdots, b_n \rangle$.

OBSERVATION 2. For every $n \cong_n$ has only finitely many equivalence classes.

PROOF. If \approx_1 has infinitely many equivalence classes, we clearly have 2^{x_0} non-isomorphic expansions. Assume that the statement is true for $n - 1$ and that \cong_n has infinitely many classes, then there is a $n-1$ tuple \bar{a} and an infinite $D \subset |M|$ so that for every pair of distinct members of D d, $d' : \langle \bar{a}, d \rangle \neq_{n} \langle \bar{a}, d' \rangle$. Thus in the model $\langle M, \bar{a} \rangle \cong_1$ has infinitely many classes, contradiction.

OBSERVATION 3. The number of formulas $\varphi(x_0,\dots,x_n) \in L$ up to equivalence in M is finite. M is homogeneous, and the theory of M is categorical in \aleph_0 .

PROOF. Simple consequence of Observation 2.

REMARK. As tp(\bar{a}) is equivalent in M to a single formula $\varphi(\bar{x})$, we may assume that tp(\bar{a}) is a single formula.

The following fact will be used implicitly in this paper:

OBSERVATION 4. Let $\Sigma(x_1, \dots, x_n)$ be a second-order formula in the language of M (i.e., its free second-order relations are atomic relations of M), then there is a first-order formula $\varphi(x_1, \dots, x_n)$ so that $M \models \forall x_1, \dots, x_n$ ($\varphi \equiv \Sigma$).

PROOF. Set $Q = {tp(a_1, \dots, a_n) \mid M \models \Sigma(a_1, \dots, a_n)}.$ Q is finite. Let $\varphi =$ $V_{\tau \in \Omega} \tau$. As *M* is homogeneous, φ is equivalent to Σ .

OBSERVATION 5. There is no formula $\varphi(x, y)$ (φ may contain parameters), so that $\varphi(x, y)$ defines a linear order on any infinite set.

PROOF. Assume $\varphi(x, y)$ is a linear order on some infinite set. We can assume that φ (x, y) contains no parameters (otherwise make them individual constants). Let τ be a countable order type. As M is the only model of Th(M) in \aleph_0 , there is $A \subset M$ so that $\langle A, \varphi(x, y) \rangle \cong \tau$ (one has to write a diagram which is consistent with Th(M)). As there are 2^{κ_0} countable order types, M has 2^{κ_0} expansions. Contradiction.

DEFINITION 2. (A) A system is an infinite ordered set $\langle I, \langle \rangle$, and a finite sequence of functions F_1, F_2, \dots, F_n s.t. $F_i: I^{k_i} \to |M|$.

(B) Let $\langle I, \langle \rangle$ be an ordered set and $\bar{\alpha} = \langle \alpha_1, \dots, \alpha_n \rangle$ a sequence of members of I. Define $\text{atp}(\bar{\alpha}) = \{x_i < x_j | \alpha_i < \alpha_j\} \cup \{x_i = x_j | \alpha_i = \alpha_j\}$ (atp $(\bar{\alpha})$) is the set of atomic relations satisfied by $\bar{\alpha}$).

(C) A system $\langle I, \langle \rangle, F_1, F_2, \cdots, F_n$ is *m*-homogeneous, if for any sequences $F_i, F_i, \dots, F_{i_m}; \bar{\alpha}_1, \bar{\alpha}_2, \dots, \bar{\alpha}_m; \bar{\beta}_1, \bar{\beta}_2, \dots, \bar{\beta}_m$

$$
\mathrm{tp}(F_{i_1}(\bar{\alpha}_1), F_{i_2}(\bar{\alpha}_2), \cdots, F_{i_m}(\bar{\alpha}_m)) \neq \mathrm{tp}(F_{i_1}(\bar{\beta}_1), F_{i_2}(\bar{\beta}_2), \cdots, F_{i_m}(\bar{\beta}_m))
$$

implies $\text{atp}(\bar{\alpha}_1, \bar{\alpha}_2, \cdots, \bar{\alpha}_m) \neq \text{atp}(\bar{\beta}_1, \bar{\beta}_2, \cdots, \bar{\beta}_m).$

(D) Two systems $\langle I, \langle \rangle, F_1, \cdots, F_n$ and $\langle I', \langle \rangle, F'_1, \cdots, F'_n$ are *m*-similar, if F_i and F'_{i} have the same number of places and for any sequences $i_1, i_2, \dots, i_m \leq n$; $\bar{\alpha}_1, \bar{\alpha}_2, \cdots, \bar{\alpha}_m; \ \bar{\beta}_1, \bar{\beta}_2, \cdots, \bar{\beta}_m$ so that $\bar{\alpha}_i \subset I$ and $\bar{\beta}_i \subset I'$ if

 $\text{tp}(F_i(\bar{\alpha}_1), F_i(\bar{\alpha}_2), \cdots, F_{i-1}(\bar{\alpha}_m)) \neq \text{tp}(F'_i(\bar{\beta}_1), F'_i(\bar{\beta}_2), \cdots, F'_{i,m}(\bar{\beta}_m)),$

then $\text{atp}(\bar{\alpha}_1, \bar{\alpha}_2, \cdots, \bar{\alpha}_m) \neq \text{atp}(\bar{\beta}_1, \bar{\beta}_2, \cdots, \bar{\beta}_m).$

(It is clear that if any two systems are m -similar then both are m homogeneous.)

OBSERVATION 6. Let $\langle I, \langle \rangle, F_1, \cdots, F_n$ be a system, then for any $m < \omega$, there is an infinite $I' \subset I$ so that the system $\langle I', \langle \rangle, F_1 \mid I', F_2 \mid I', \cdots, F_n \mid I'$ is m -homogeneous.

PROOF. By the Ramsey theorem [3] and Observation 2.

OBSERVATION 7. Let $\langle I, \langle \rangle, F_1, \cdots, F_n \rangle$ be an *m*-homogenous system and $\langle I^*, \langle \rangle$ any countable ordered set, then there are F_1^*, \dots, F_n^* such that the system $\langle I^*, \langle \rangle, F_1^*, \cdots, F_n^*$ is *m*-similar to $\langle I, \langle \rangle, F_1, \cdots, F_n$.

PROOF. One has to write a diagram which is consistent with $Th(M)$. As M is the only model of Th(M) in \aleph_0 , this diagram is realized in M.

DEFINITION 3. (A) "For almost all $x \cdots$ " will mean "For all x, except for finitely many, \cdots "

(B) For $a, b \in |M|$ define $E(a, b)$ = For almost all d, tp(a, d) = tp(b, d)).

DEFINITION 4. Let $A, B \subset |M|$. A and B are *separable* if there is a formula $\varphi(x)$ (φ may contain parameters) s.t. $a \in A \Rightarrow \varphi(a)$ and $b \in B \Rightarrow \neg \varphi(b)$.

OBSERVATION 8. E is an equivalence relation and has finitely many equivalence classes.

PROOF. Clearly, E is an equivalence relation. Assume E has infinitely many classes. Let $\langle Q, \langle \rangle$ be the rationals. There is a system $\langle Q, \langle \rangle$, $a_{\alpha}, b_{\alpha,\beta,\gamma}$ for $\alpha, \beta, \gamma \in Q$ s.t. for any $\alpha \neq \beta$, $\gamma \neq \delta$; $tp(a_{\alpha}, b_{\alpha, \beta, \gamma}) \neq tp(a_{\beta}, b_{\alpha, \beta, \gamma})$ and $b_{a,\beta,\gamma} \neq b_{a,\beta,\delta}$. From Observations 6 and 7, we can assume that this system is 2-homogenous.

CLAIM. There is a system $\langle \omega, \langle \rangle$, $c_i, d_{i,j}$, $i, j \in \omega$, such that:

- (1) This system is 2-homogenous,
- (2) $tp(c_1, d_{1,0}) \neq tp(c_0, d_{1,0}),$

(3) For any *m,n, i,j, k* $\in \omega$, $n \neq m$: $d_{i,n} \neq d_{i,m}$, $tp(c_k, d_{n,i}) = tp(c_k d_{n,i})$ and $tp(d_{m,i}, d_{n,j}) = tp(d_{m,i}, d_{n,k}).$

Proof. Let α_i , $i \in \omega$ be an increasing sequence of rationals, and for each $i \in \omega$ let $\beta_{i,k}$, $k \in \omega$ be an increasing sequence of rationals in the interval (α_1, α_{i+1}) . Define $c^* = a_{\alpha_i}, b^*_{i,j} = b_{\alpha_i, \alpha_{i+1}, \beta_{i,j}}$. We have $tp(c^*, b^*_{i,j}) \neq tp(c^*_{i+1}, b^*_{i,j})$.

Case 1. $tp(c^*, b^*_{1,1}) \neq tp(c^*, b^*_{1,1})$. Set $c_i = c^*_{2i}, d_{i,j} = b^*_{2i,j}$.

Case 2. $tp(c_2^*, b_{1,1}^*) \neq tp(c_0^*, b_{1,1}^*)$. Set $c_i = c_{2i}^*, d_{i,j} = b_{2i-1,j}^*$. We leave the verification of clauses (1), (2), (3) of the claim to the reader.

Let $\tau = \text{tp}(c_0, d_{0,0})$.

Case 1. The sets $\{c_i \mid i \in \omega\}$, $\{d_{i,j} \mid i,j \in \omega\}$ are separable, by a formula $(\varphi(c_i)$ and $\sim \varphi(d_{i,j})$ for all *i, j).* Let $F:\omega \to \omega$ be any function satisfying $F(i) > \sum_{j \leq i} F(j)$, then there is $A \subset \{c_i \mid i \leq \omega\} \cup \{d_{i,j} \mid i,j \leq \omega\}$ such that

 $\{\Vert \{d : d \in A, \sim \varphi(d), \tau(c, d)\} \Vert : c \in A \text{ and } \varphi(c)\} = \text{Range}(F).$

Clearly this is a contradiction to (P2).

Case 2. The sets ${c_i}$ and ${d_{i,i}}$ are not separable. We can assume that the system $\langle \omega, \langle \rangle, a_i, b_{i,j}$ can be extended to a 2-homogeneous system on $\langle \omega + 1, \langle \rangle$ (otherwise we take another system by Observation 7). By Observation 5, $tp(c_0, c_\omega) = tp(c_\omega, c_0)$, otherwise $tp(c_0, c_\omega)$ would order the set $\{c_i \mid i < \omega\}$. $tp(c_0, c_\omega) = tp(c_0, d_{\omega,0})$, or else $\{c_i\}$, $\{d_{i,j}\}$ would be separable by a formula with the parameter c_0 . For the same reasons we have

$$
tp(c_0, c_{\omega}) = tp(c_{\omega}, d_{0,0}) = tp(d_{\omega,0}, d_{0,0}).
$$

In conclusion, for any $x, y \in \{c_i\} \cup \{d_{i,j}\}\$, if $\tau(x, y)$ then there exists an n s.t. $x, y \in \{c_n, d_{n,i} \mid i < \omega\}$. For any $A \subset \{c_i\} \cup \{d_{i,j}\}$ let $\psi_A(x, y) = (x, y \in A)$ and $\tau(x, y)$ or $\tau(y, x)$) and let φ_A = the transitive closure of ψ_A . Let E_q be any equivalence relation on ω , then it is possible to construct a set $A \subset \{c_i\} \cup \{d_{i,j}\}\$ s.t. $\langle A, \varphi_A \rangle \cong \langle \omega, E_q \rangle$. Contradiction to (P2).

OBSERVATION 9. The relation "x is algebraic over y" is an equivalence relation on the non-algebraic elements of M.

PROOF. Transitivity and reflexivity are trivial. So assume we have a algebraic over b, b not algebraic over a and a not algebraic. Let $N < \omega$ be such that for all $d \in |M|$, $\langle M, d \rangle$ has less than N algebraic elements (such an N exists by Observation 3). As tp(a) is not algebraic and E has finitely many classes, there is a sequence a_1, a_2, \ldots, a_N such that $tp(a_i) = tp(a)$ and E (a_i, a_j) for all $i, j \le N$. For almost all d we have tp(a_i , d) = tp(a_j , d). As for infinitely many d, tp(a_i , d) = tp(a, b), then there is a d such that tp(a_i , d) = tp(a , b) $\forall i$. Thus, there are at least N algebraic elements over d. A contradiction.

OBSERVATION 10. If a is algebraic over (b, c) then either a is algebraic over b or a is algebraic over c.

PROOF. Assume a is algebraic over $\langle b, c \rangle$ but not algebraic over any single one of them. By Observation 9 (in the models $\langle M, b \rangle$ and $\langle M, c \rangle$) b is algebraic over $\langle a, c \rangle$ and c algebraic over $\langle a, b \rangle$. As tp(a) is not algebraic, and b not algebraic over a, there is a system $\langle Q, \langle \rangle$, $a_{\alpha}, b_{\alpha,\beta}, c_{\alpha,\beta}$ s.t. tp $(a_{\alpha}, b_{\alpha,\beta}, c_{\alpha,\beta})$ = *tp(a, b, c),* and for $\gamma \neq \delta$: $a_{\gamma} \neq a_{\delta}$ and $b_{\alpha,\gamma} \neq b_{\alpha,\delta}$. By Observations 6, 7 we can assume that this system is 3-homogeneous. For every $\gamma \neq \delta$, $c_{\alpha,\gamma} \neq c_{\alpha,\delta}$, or else we have infinitely many elements algebraic over the pair $\langle a_{\alpha}, c_{\alpha, \delta} \rangle$. Set $W =$ ${a_{\alpha}, b_{\alpha,\beta}, c_{\alpha,\beta} | \alpha, \beta \in Q}$, $\varphi(x, y, z) = x$ is algebraic over $\langle y, z \rangle$ and $x \neq y \neq z$ ".

An easy check yields that for distinct *x*, *y*, *z* \in *W*, φ (*x*, *y*, *z*) if $\exists \alpha, \beta, x, y, z \in$ ${a_{\alpha}, b_{\alpha,\beta}, c_{\alpha,\beta}}$ (in any other case, there will be infinitely many elements algebraic over the same pair). For $A \subset W$ define $\psi_A(xy) = x, y \in A$ and $\exists z \in A$ $\varphi(x, y, z)$ ". Let Eq be any equivalence relation on ω , whose equivalence classes have an odd number of elements, then one can build $A \subset W$ s.t. $\langle A, \bar{\psi}_A(x, y) \rangle \cong$ $\langle \omega, \text{Eq} \rangle$ where $\bar{\psi}_A$ is the transitive closure of ψ_A . Contradiction to (P2).

OBSERVATION 11. If $E(a, b)$ and d is not algebraic over a and b then $tp(a, d) = tp(b, d).$

PROOF. Trivial.

OBSERVATION 12. For any a, b , such that neither is algebraic over the other, $tp(a, b)$ depends only on the E equivalence classes of a and b.

PROOF. Let a', b' be another pair s.t. neither is algebraic over the other and $E(a, a')$ and $E(b, b')$. If $a = a'$ then $tp(a, b) = tp(a', b')$ by Observation 11. Otherwise, there is a d such that $E(b, d)$ and d not algebraic over a and a' (the E class of b is infinite because b is not algebraic), so we have $tp(a, b)$ = $tp(a, d) = tp(a', d) = tp(a', b').$

DEFINITION 5. $E^a(x, y) =$ "For almost all *z*, tp(*a*, *x*, *z*) = tp(*a*, *y*, *z*)" (i.e. E^a is the formula E defined in the model (M, a)).

OBSERVATION 13. For nonalgebraic elements a, b and for c nonalgebraic over $\langle a, b \rangle$, $E^c(a, b) \Leftrightarrow E(a, b)$.

PROOF. Assume $E(a, b)$ and $\sim E^c(a, b)$, we may assume that a, b are not algebraic one over the other (or else take some d in the same E equivalence class which is not algebraic over *a, b,* then $\sim E^c(d, b) \cup \sim E^c(d, a)$. By Observation 12, for any d , e which belong to the E equivalence class and are not algebraic one over the other, $tp(a, b) = tp(d, e)$. Thus there is a system $\langle Q, \langle \rangle$, a_{α} , $c_{\alpha,\beta,\gamma}$ s.t. $\sim E^{c_{\alpha,\beta,\gamma}}(a_{\alpha},a_{\beta})$, and for $\gamma \neq \delta$: $a_{\gamma} \neq a_{\delta}$ and $c_{\alpha,\beta,\gamma} \neq c_{\alpha,\beta,\delta}$. Furthermore, we can assume that this system is 3-homogeneous. Let e be any $c_{\kappa,\lambda,\mu}$. As E^{ϵ} has finitely many classes, and by the 3-homogeneity, all a_{σ} , $\sigma < \min{\{\kappa, \lambda, \mu\}}$, are E^{*} equivalent. Let $0 < \alpha < \beta$, then for infinitely many e, $E^*(a_0, a_\alpha)$ and $\sim E^{\epsilon}(a_0, a_{\beta})$ (one of the sets ${c_{\beta,\beta+1,\gamma}}|\gamma > \beta + 1$ or ${c_{\frac{1}{2}(\alpha+\beta),\beta,\gamma}}|\gamma > \beta$ will be appropriate). Hence, in the model $\langle M, a_0 \rangle$, $\sim E^{a_0}(a_\alpha, a_\beta)$ for $0 < \alpha < \beta$, a contradiction to Observation 8.

OBSERVATION 14. For $\bar{a} = \langle a_1, a_2, \dots, a_n \rangle$ s.t. no a_i is algebraic over the others, tp(\bar{a}) depends only on the E equivalence classes of the a_i .

PROOF. Let $\bar{a}' = \langle a'_1, \dots, a'_n \rangle$ such that no a'_i is algebraic over the others and $E(a_i, a'_i)$, we have to show that tp(\bar{a}) = tp(\bar{a}'). Assume the theorem is true for $n-1$. Now if $a'_1 = a_1$, tp(\bar{a}) = tp(\bar{a}') by the induction hypothesis in the model $\langle M, a_1 \rangle$ and by Observation 13; otherwise take d which is not algebraic over \bar{a}, \bar{a}' and $E(d, a_1)$. We have $tp(\bar{a}) = tp(d, a_2, \dots, a_n) = tp(d, a'_2, \dots, a'_n) = tp(\bar{a}')$.

DEFINITION 6. (A). Let K be the maximum cardinality of the equivalence classes "x algebraic over y". A sequence \bar{a} is *special* if its length is K and its range is an equivalence class of "x algebraic over y ".

(B). \bar{Z} *separates* the two "specials" \bar{a} , \bar{b} if tp(\bar{a} , \bar{Z}) \neq tp(\bar{b} , \bar{Z}).

(C). Two "specials" \bar{a} , \bar{b} are separable if there is a \bar{Z} (not necessarily special) s.t. \bar{Z} separates \bar{a} and \bar{b} , and $\bar{Z} \wedge (\bar{a} \cup \bar{b}) = \emptyset$.

ASSUMPTION. (W.L.O.G.) All the algebraic elements of M are individual constants.

OBSERVATION 15. There is a \bar{Z} which separates any pair of separable "specials".

PROOF. Let a_i , $i < n$ be a sequence of elements s.t. no a_i is algebraic over the others, and each E class contains two elements of this sequence. For $i, j \le n$ there is $\bar{Y}_{i,j}$ s.t. for any two "specials" \bar{a}_i , which contains a_i and \bar{a}_j which contains a_{i} , if \bar{a}_{i} , \bar{a}_{i} are separable, then $\bar{Y}_{i,j}$ separates them, and $\bar{Y}_{i,j} \wedge (\bar{a}_{i} \cup \bar{a}_{i}) = \emptyset$. We may assume that $\bar{Y}_{i,j}$ is algebraicly closed. Let \bar{s} be minimal s.t. $\bar{Y}_{i,j}$ = algebraic closure of \bar{s} , then tp(a_i , \bar{s}) contains the statement "The algebraic closure of \bar{s} separates all separable specials \bar{b}, \bar{c} s.t. \bar{b} contains a_i and \bar{c} contains a_j ". Thus by Observation 14 $\bar{Y}_{i,j}$ separates all separable specials \bar{b}, \bar{c} s.t. \bar{b} contain an element which is E -equivalence to a_i , and \bar{c} contain an element which is E -equivalence to a_i . Set $\bar{Z} = \cup \bar{Y}_{i,i}$.

DEFINITION 7. For any "specials" \bar{a}, \bar{b} : $E^*(\bar{a}, \bar{b}) = "a, \bar{b}$ are not separable".

OBSERVATION 16. E^* is an equivalence relation on the special sequence, that has finitely many classes.

PROOF. By Observation 15 E^* has finitely many classes. Thus all we have to show is that E^* is transitive. Assume $E^*(\bar{a}, \bar{b})$, $E^*(\bar{b}, \bar{c})$. It is sufficient to find an \bar{x} s.t. tp(\bar{x}) = tp(\bar{Z}) (\bar{Z} of Observation 15) and \bar{x} does not separate \bar{a} and \bar{c} . Since \bar{z} contains no algebraic elements, by application of Observation 14 there is \bar{x} , $tp({\bar x}) = tp({\bar Z})$ and ${\bar x} \wedge (\bar a \cup \bar b \cup \bar c) = \emptyset$. As ${\bar x}$ does not separate the pair $\langle {\bar a}, {\bar b} \rangle$ and $\langle \bar{b}, \bar{c} \rangle$, it does not separate the pair $\langle \bar{a}, \bar{c} \rangle$.

OBSERVATION 17. Let $\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n$ be a sequence of pairwise disjoint "specials", then tp($\bar{a}_1, \dots, \bar{a}_n$) depends only on the E^* equivalence classes of the \bar{a} .

PROOF. Let $\bar{b}_1, \dots, \bar{b}_n$ be another sequence of pairwise disjoint "specials" and $E^*(\bar{a}_i,\bar{b}_i)$. If for all $i \geq 2$ $\bar{a}_i = \bar{b}_i$ then by definition of E^* tp($\bar{a}_1, \dots, \bar{a}_n$) = $\text{tp}(\vec{b}_1,\dots,\vec{b}_n)$, otherwise we can find a sequence of interpolants between $\langle \bar{a}_1, \cdots, \bar{a}_n \rangle$ and $\langle \bar{b}_1, \cdots, \bar{b}_n \rangle$.

THEOREM. *M satisfies* (P3).

PROOF. First let us assume for simplicity that M contains no algebraic elements, and there is one E^{*}-equivalence class e s.t. any special $\langle a_1, \dots, a_n \rangle$ **has a** permutation $\langle b_1, \dots, b_n \rangle$ which belongs to e. Choose any $\langle b_1, \dots, b_n \rangle \in e$. Define the model N_1 by $N_2 = \langle \{b_1, \dots, b_n\} \rangle = R_i$, $i \leq n$ where:

1) $b_i \equiv b_i$ for any *i*, *J*.

2) $R_i(b_i)$ iff $i = J$.

Clearly M is isomorphic to a reduct of a definable expansion of $\Sigma_{i\leq w}N_{1}$. If more than one equivalence class of E^* is needed, we get M a definable expansion of $\sum_{i=1}^k (\sum_{i \leq w} N_i) \cong \sum_{i \leq w} \overline{N}$ where $\overline{N} = N_1 + N_2 + \cdots + N_k$. If there are algebraic elements, they constitute N_0 .

REFERENCES

1, P. **Erdos and** R. Rado, *Intersection theorems for systems of sets,* **J. London Math.** Soc. 44 (1969), 467-474.

2, H. J. Keisler, *lnfinitary Languages,* **North-Holland** Publ. Co., Amsterdam, 1971.

3, F. D. Ramsey, *On a problem of formal logic,* Proc. **London Math.** Soc. 30 (1929), 338-384.

4, S. **Shelah,** *There are just four second-order quantifiers,* **Israel J. Math.** 15 (1973), 282-300.

5. S. **Shelah,** *Various results in mathematical logic,* **Notices Amer. Math.** Soc. 22 (1975), A-23.

6. J. Stavi, *Free complete Boolean algebras andfirst order structures,* **Notices Amer. Math.** Soc. 22 (1975), A-326.

INSTITUTE OF MATHEMATICS THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL

AND

DEPARTMENT OF MATHEMATICS STANFORD UNIVERSITY STANFORD, CALIFORNIA, USA