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MODELS WITH FEW ISOMORPHIC 
EXPANSIONS 

BY 

A. LITMAN AND S. SHELAH* 

ABSTRACT 

We shall characterize the countable models M, with only countably many 
expansions by a one place predicate. 

The theorem we shall prove here is: 

THEOREM 1. Let M be a countable model, then the following conditions are 
equivalent: 

(P1) the number of (M, P) (P C_ I MI) up to isomorphism is No. 

(P2) the number of (M, P) (P C_ [M])  up to isomorphism is < 2".  

(P3) there are finite models, No, NI such that M is a reduction of a definable 

expansion of No + E~ <~ N1. (See Definition 0 for the definition of sum of models.) 

The consideration of condition (P1) was suggested by Stavi [6], when 

investigating whether in a Fraenkel-Mostowski model (of set theory) the free 

Boolean algebra generated by the atoms is a set. He asked whether the number 

of (M, P)  (P C I MI)  up to isomorphism can be ~ and 1~1 < 2 "  - -  so the answer is 

negative. 

Clearly if we replace one-place predicate by a two-place predicate, the number 

of (M, P)  is always 2 "~ 

PROBLEM. For a model M of cardinality h, what can be [ { ( M , P ) / ~ - ' P  C_ 

I MI} I and is there a characterization similar to Theorem 1? 

Our method is somewhat similar to Shelah [4], and the result was proved by 

Shelah and announced in [5]. Then Litman shortened the proof by half using the 

same technique. 

* The second author is thankful for NSF Grant 43901, by which he was partially supported. 
Received April 30, 1975 and in revised form November 29, 1976. 
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DEFINITION 0. (A) Let {M, li E I} be an indexed family of models in the 

same language L such that 

1) The models {M, j i E I} have disjoint domains. 

2) L contains no functions or constants. 

We define M = E ~ M ,  where M is a model of the same language L, the domain 

of M is the union of the domains of {M~ l i ~ I} and for any atomic relation R, 

M = R ( a , , . . . , a , )  iff a , , ' " , a ,  all belong to the same model, say Mj, and 

Mj = R ( a l , "  .a,). 
(B) For two models M~, M2 define Mj + M2 = E~,l~,2} M, 

PROOF OF THEOREM 1. It is clear that (P3) f f  (P1) f f  (P2), so from now on 

we shall assume (P2), and eventually prove (P3), by a series of observations. 

Let I MI be the universe of M, a, b, c, elements of I MI ,  &/~, ~? a finite sequence 

of such elements. Let L be the first-order language associated with M. 

tp (a l , - - - ,  a , )  = {q~(xi,-- ", x,)l  M l=q~(a~, -. ., an), q~ contains no parameters}. 

We shall not distinguich strictly between a sequence ti and its range. 

OBSERVATION 1. Any expansion of M by finitely many individual constants 

satisfies conditions (P2). 

The proof is trivial. 

DEFINITION 1. ( a , , a z , . . . , a , ) - ~ , ( b , , b 2 , . . . , b , )  iff (M,a , , a z , . . ' , a , )~ -  
(M, bl, b2,-" ", b,). 

OBSERVATION 2. For every n, ~ ,  has only finitely many equivalence classes. 

PROOF. If ~1 has infinitely many equivalence classes, we clearly have 2 "o 

non-isomorphic expansions. Assume that the statement is true for n - 1 and that 

= ,  has infinitely many classes, then there is a n -  1 tuple ~/ and an infinite 

D C I MI so that for every pair of distinct members of D d, d ' :  (& d) # ,  (t/, d'). 

Thus in the model (M, fi) ---t has infinitely many classes, contradiction. 

OBSERVATION 3. The number of formulas 9 ( X o , - " , x , ) E L  up to equiva- 

lence in M is finite. M is homogeneous, and the theory of M is categorical in no. 

PROOF. Simple consequence of Observation 2. 

REMARK. AS tp(d) is equivalent in M to a single formula ~(~), we may 

assume that tp(t/) is a single formula. 

The following fact will be used implicitly in this paper: 
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OBSERVATION 4. Let  ~(x~, �9 � 9  x , )  be a second-order  formula  in the language 

of M (i.e., its f ree  second-orde r  relat ions are a tomic relat ions of M) ,  then there  

is a f irst-order formula  q ~ ( X l , " ' , x , )  so that M ~ V x l , . . . , x .  (~ =-'Z). 

PROOF. Set Q={tp(a~, . . . ,a , ) tM~'s  O is finite. Let  q~= 

V,~o":. As M is homogeneous ,  ~ is equivalent  to E. 

OBSERVATION 5. There  is no formula  q~ (x, y)  (~ may contain parameters) ,  so 

that r162 y)  defines a linear o rde r  on any infinite set. 

PROOF. Assume ~ (x, y)  is a linear o rder  on some infinite set. We  can assume 

that q~ (x, y)  contains no paramete rs  (otherwise make  them individual constants).  

Let  ~- be a countab le  o rder  type.  As M is the only model  of T h ( M )  in No, there  is 

A C M so that (A, ~(x,  y))  -~ r (one has to write a diagram which is consistent 

with Th(M)) .  As there  are 2 M,' countable  o rde r  types, M has 2 "0 expansions.  

Contradic t ion.  

DEFINITION 2. (A) A system is an infinite o rdered  set (L < ) ,  and a finite 

sequence  of funct ions F1, F 2 , "  ", F,  s.t. F~ : I k, ~ [M t. 

(B) Let  (/, < ) be an o rde red  set and ~ = (~1," �9 ", a , )  a sequence  of members  

of I. Def ine  a tp (~)  = {x~ < xj [a~ < a~} U {x~ = xj l a~ = a,} (a tp(~)  is the set of 

atomic relat ions satisfied by ~).  

(C) A system (I, < ), F1, F 2 , " ' ,  F ,  is m-homogeneous, if for  any sequences  

F,,,F,2,.. ",F,m; ~ , , a 2 , . "  ",&m; /31,/32," " ' , t im 

tp(F~,(~ 1), F,2(~:), �9 �9 �9 F,m (&.))  ~ tp(F,,(fi0, F,2(fi:), �9 �9 �9 F,m (tim)) 

implies atp(cL, &2,'" ", &,,) ~ a t p ( ]3 , , / 32 , " ' ,  tim). 

(D) Two systems (I, < ), F ~ , - . . ,  F,  and (I ' ,  < ), F'I, �9 �9 ", F "  are m -similar, if F, 
and F'~ have the same number  of places and for any sequences  il, i : , .  �9 �9 i,. =< n ; 

1~1~, &2," ~ [~m ; ]319 ]32," " ' ,  ~trl SO that &, C I and fi, C I '  if 

tp(F,,(& 1), F,2(c~2), �9 �9 ", F,= (&,,)) # tp(F',(fil), F:~(fi2), �9 �9 �9 F'~ (tim)), 

then atp(cL, &~, �9 �9 �9 ,~,,) ~ atp(]31, ]32, �9 �9 �9 ). 

(It is clear that if any two systems are m-similar  then both  are m-  

homogeneous . )  

OBSERVATION 6. Let  (L < ) ,  F I , " ' , F .  be a system, then for any m < w, 

there  is an infinite I '  C I so that the system (I ' ,  < ), F, r I ' ,  F21 I ' , "  �9 ", F.  I [ '  is 

m -homogeneous .  
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PROOF. By the Ramsey theorem [3] and Observation 2. 

OBSERVATION 7. Let (L <) ,  F , , . . . , F , ,  be an m-homogenous system and 

(I*, < )  any countable ordered set, then there are F,*,.. ',F*n such that the 

system (I*, <) ,  F L ' " , F *  is m-similar to (I, <) ,  F~ , . . . ,  F,. 

PROOF. One has to write a diagram which is consistent with Th(M). As M is 

the only mode[ of Th(M) in No, this diagram is realized in M. 

DEFINITION 3. (A) "For almost all x . . . "  will mean "For  all x, except for 

finitely many, . . . "  

(B) For a, b ~E I MI define E (a, b ) - -Fo r  almost all d, tp(a, d)-- tp(b,  d)). 

DEFINITION 4. Let A, B C I M I. A and B are separable if there is a formula 

r  (r may contain parameters) s.t. a E A ~ r  and b E B ~ ~ q~(b). 

OBSERVATION 8. E is an equivalence relation and has fnitely many equiva- 

lence classes. 

PROOF. Clearly, E is an equivalence relation. Assume E has infinitely many 

classes. Let (Q, < )  be the rationals. There is a system (Q, <) ,  a~, bo.o,, for 

a, 19, y @ Q  s.t. for any a ~ f l ,  y ~ 6 ;  tp(ao, b~.~,~)~tp(a~,b~,~,~) and 

b,, ,~.~ b~.~.~. From Observations 6 and 7, we can assume that this system is 

2-homogenous. 

CLAIM. There is a system (o2, <), c, d~,j, i,j E o2, such that: 

(1) This system is 2-homogenous, 

(2) tp(c,, d,,0) ~ tp(c,,, d,,o), 

(3) For any m,n, i,j, k E w ,  n # m :  d~,,#d~,,,, tp(ck, d,,~)=tp(ckd,.j) and 

tp(d,,.,, d,4) - tp(dm,,, d,.k). 

PROOF. Let a~, i E 

iEo2 let /3,.k, k E o 2  

(a~,a~,~). Define c* = 

Case 1. tp(c*,b~' 

Case 2. tp(c *, b I'. 

verification of clauses 

Let z = tp(c,,, do.o). 
Case 1. The sets 

(~(c,) and - ~r 

F(i) > Ej<,F(j), then 

to be an increasing sequence of rationals, and for each 

be an increasing sequence of rationals in the interval 

ao,, b*, = b ........ ~,.j. We have tp(c*, b*.j)~ tp(c*+,, b* j). 

, )~  tp(c*,b* ,). Set c, = c*,d,.i  = b2,,j. 
, ) ~ t p ( c * , b * , ) .  Set c~ c*,,d~i * = = bzi-~.j. We leave the I ,  

(1), (2), (3) of the claim to the reader. 

{c, l i E w}, {d,.jli, j ~ w} are separable, by a formula 

for all i, j). Let F :w- -~  o) be any function satisfying 

there is A C {e~ l i < o2} U{d~.iti, j < o2} such that 



Vol. 28, 1977 MODELS 335 

{ll{d : d E A, - ~ (d ) , r (c ,d )} l l : c  E A and q~(c)} = Range(F). 

Clearly this is a contradiction to (P2). 

Case 2. The sets {c~} and {d~.j} are not separable. We can assume that the 

system (o), < ), a,, b~,j can be extended to a 2-homogeneous system on Co) + 1, < ) 

(otherwise we take another system by Observation 7). By Observation 5, 

tp(co, co,)=tp(c~,co), otherwise tp(co, c~,) would order the set {q [i <w}.  

tp(co, c~)= tp(co, do.o), or else {c,}, {d,4} would be separable by a formula with 

the parameter co. For the same reasons we have 

tp(co, co,) = tp(c~, d0.o) = tp(do,.o, do.o). 

In conclusion, for any x,y E{c,}U{d,.j}, if r (x ,y )  then there exists an n s.t. 

x, yE{c, ,d, , ,[i<o~}. For any AC{c,}U{d~,j} let tOa(x,y)=(x, y E A  and 

.r(x,y) or ~-(y,x)) and let q~.~ = t h e  transitive closure of tOa. Let Eq be any 

equivalence relation on w, then it is possible to construct a set A C {c~} U {&,,} 

s.t. CA, ~a) = C00, E~). Contradiction to (P2). 

O~SERVATION 9. The relation "x is algebraic over y "  is an equivalence 

relation on the non-algebraic elements of M. 

PROOF. Transitivity and reflexivity are trivial. So assume we have a algebraic 

over b, b not algebraic over a and a not algebraic. Let N < o0 be such that for all 

d E I M  1, CM, d) has less than N algebraic elements (such an N exists by 

Observation 3). As tp(a) is not algebraic and E has finitely many classes, there is 

a sequence al, a2 . . . .  , aN such that tp(a,) = tp(a) and E (a~, aj) for all i,j <= N. 
For almost all d we have tp(a,, d) = tp(aj, d). As for infinitely many d, tp(a~, d) = 

tp(a, b), then there is a d such that tp(a,, d) = tp(a, b) Vi. Thus, there are at least 

N algebraic elements over d. A contradiction. 

OBSERVATION 10. If a is algebraic over (b, c) then either a is algebraic over b 

or a is algebraic over c. 

PROOF. Assume a is algebraic over (b, c) but not algebraic over any single 

one of them. By Observation 9 (in the models CM, b) and (M, c)) b is algebraic 

over (a, c) and c algebraic over (a, b). As tp(a) is not algebraic, and b not 

algebraic over a, there is a system (Q, <) ,  a,, b~,o, c~.~ s.t. tp(a,, b~.~, c, .~)= 

tp(a,b,c), and for 7 ~  6: a~fi as and b,~.~fi bo.8. By Observations 6, 7 we can 

assume that this system is 3-homogeneous. For every 7 ~ & c~, ~ ~ c~. ~, or else we 

have infinitely many elements algebraic over the pair (a,,,c~,~). Set W = 

{a~,b~.~,c~.~ ta,[3 E O}, ~ ( x , y , z ) = " x  is algebraic over (y ,z)  and x ~  y ~  z". 
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An easy check yields that for distinct x,y,z E W, ~0(x,y,z) if =la,/3, x,y,z E 
{a,, b~.s, co.s} (in any other case, there will be infinitely many elements algebraic 

over the same pair). For A C W  define $a(xy)="x, y GA and 3 z E A  
~0(x, y, z)" .  Let Eq be any equivalence relation on to, whose equivalence classes 

have an odd number of elements, then one can build A C W s.t. (A, ~,~ (x, y)) - 

(to, Eq) where t~A is the transitive closure of ~Oa. Contradiction to (P2). 

OBSERVATION 11. If E(a,b) and d is not algebraic over a and b then 

tp(a, d) = tp(b, d). 

PROOF. Trivial. 

OBSERVATION 12. For any a, b, such that neither is algebraic over the other, 

tp(a, b) depends only on the E equivalence classes of a and b. 

PROOF. Let a ' ,  b' be another pair s.t. neither is algebraic over the other and 

E(a,a') and E(b,b'). If a = a '  then tp(a,b)=tp(a',b') by Observation 11. 

Otherwise, there is a d such that E(b, d) and d not algebraic over a and a '  (the 

E class of b is infinite because b is not algebraic), so we have tp(a,b)= 
tp(a, d) = tp(a',  d) -- tp(a',  b'). 

DEFINITION 5. E " ( x , y )  = "For  almost all z, tp(a,x,z) = t p ( a ,y , z ) "  (i.e. E"  

is the formula E defined in the model (M, a)). 

OBSERVATION 13. For nonalgebraic elements a ,b and for c nonalgebraic 

over (a, b), E~(a, b) r162 E(a, b). 

PROOF. Assume E(a, b) and - E C ( a ,  b), we may assume that a, b are not 

algebraic one over the other (or else take some d in the same E equivalence 

class which is not algebraic over a,b, then -EC(d ,b )U-EC(d ,a ) ) .  By 

Observation 12, for any d, e which belong to the E equivalence class and are not 

algebraic one over the other, tp(a, b) = tp(d, e). Thus there is a system (Q, < ), 

a~, c~.s.~ s.t. ~ EC~.~.~(a~, as), and for y ~  8: a~.~ as and c~,~.~,. ~ c,.s.~. Further- 

more, we can assume that this system is 3-homogeneous. Let e be any c,.,.~,. As 

E" has finitely many classes, and by the 3-homogeneity, all a,, tr < rain{r, A, ~}, 

are E" equivalent. Let 0 <  a </3, then for infinitely many e, E'(ar a,) and 

-E'(a, , ,a~) (one of the sets {c~,o+,.~ly >/3 + 1} or {c~(~+s~.s.~l Y >/3} will be 

appropriate). Hence, in the model (M,a,,), ~ E",(a~, as) for 0 < a </3, a 

contradiction to Observation 8. 

OBSERVATION 14. For d =(a , ,a2 , . . . ,a , )  s.t. no a, is algebraic over the 

others, tp(,~) depends only on the E equivalence classes of the a~. 
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PROOF. Let gL'= ( a [ , . . . ,  a'.) such that no a', is algebraic over the others and 

E(a,, a'~), we have to show that tp(~i) = tp(fi'). Assume the theorem is true for 

n - 1. Now if a'~ = a~, tp(ti) = tp(6') by the induction hypothesis in the model 

(M, a~) and by Observation 13; otherwise take d which is not algebraic over ~i, ~i' 

and E(d ,  ai). We have tp(~i) = tp(d, a 2 , - ' . ,  a . )  = tp(d, a ~ , . . . ,  a',) = tp(fi'). 

DEFINITION 6. (A). Let K be the maximum cardinality of the equivalence 

classes "x algebraic over y" .  A sequence ti is special if its length is K and its 

range is an equivalence class of "x algebraic over y ' .  

(B). 2, separates the two "specials" ~i,/7 if t p ( & 2 , ) r  tp(b, Z).  

(C). Two "specials" &/7 are separable if there is a ,Y (not necessarily special) 

s.t. 2 separates ~ and /7, and Z, A (ti U/7) = ~ .  

ASSUMPTION. (W.L.O.G.) All the algebraic elements of M are individual 

constants. 

OBSERVATION 15. There is a ,~ which separates any pair o[ separable 

"specials". 

PROOF. Let a,, i < n be a sequence of elements s.t. no a, is algebraic over the 

others, and each E class contains two elements of this sequence. For i,1 < n 

there is f',.~ s.t. for any two "specials" 6, which contains a~ and ~ij which contains 

aj, if a~, aj are separable, then ~'~., separates them, and f',.j ^ (,~, tO ~ij) = ~3. We 

may assume that f',.j is algebraicly closed. Let g be minimal s.t. ~.j  = algebraic 

closure of g, then tp(a~, aj, g) contains the statement "The algebraic closure of g 

separates all separable specials/7, g s.t./7 contains a, and g contains aj". Thus by 

Observation 14 f'~.j separates all separable specials/7, C" s.t./7 contain an element 

which is E-equivalence to a,, and ~ contain an element which is E-equivalence 

to aj. Set 2 = U IP,,~. 

DEFiNmON 7. For any "specials" &/7 : E*(,i,/7) = "a,/7 are not separable". 

OBSERVATION 16. E* is an equivalence relation on the special sequence, that 

has finitely many classes. 

PROOF. By Observation 15 E* has finitely many classes. Thus all we have to 

show is that E * is transitive. Assume E *(& b), E *(/7, E). It is sufficient to find an 

s.t. tp(2) = tp(Z)  (Z of Observation 15) and ~ does not separate ti and 6. Since 

2, contains no algebraic elements, by application of Observation 14 there is g, 

tp(~) = tp(Z)  and s A (fi U/7 U E) = ~ .  As .~ does not separate the pair (&/~) 

and (/~ 6), it does not separate the pair (& 6). 
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OBSERVATION 17. Let a ~ , a : , . . . , a ,  be a sequence of pairwise disjoint 

"specials", then tp(aj, . . . ,  4.)  depends only on the E* equivalence classes of the 

PROOF. Let /7 , , . . . , /7 ,  be another sequence of pairwise disjoint "specials" 

and E*(6 , /~) .  If for all i _->2 d, =/~  then by definition of E* t p ( ~ , . . . , t L )  = 

tp(6 , , . . . , / 7 . ) ,  otherwise we can find a sequence of interpolants between 

(~,, �9 �9  ~i,) and (6 , , . . . , / 7 , ) .  

THEOREM. M satisfies (P3). 

PROOF. First let us assume for simplicity that M contains no algebraic 

elements, and there is one E*-equivalence class e s.t. any special ( a ~ , . . . ,  a,)  has 

a permutation (b , , . . . , b , )  which belongs to e. Choose any (b , , . . . , b~  
Define the model N, by N, = ({b,, - . ., b,}, ---, R,)i<= n where: 

1) b~---b~ for any i,J. 

2) R,(bj) iff i = J .  
Clearly M is isomorphic to a reduct of a definable expansion of E~<~ N~. If more 

than one equivalence class of E* is needed, we get M a definable expansion of 

Z~-I(E,<,oNj)~- E~<,oN where ]V = N, + N2+ "" + Nk. If there are algebraic 

elements, they constitute No. 
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