MODELS WITH FEW ISOMORPHIC EXPANSIONS

BY

A. LITMAN AND S. SHELAH⁺

ABSTRACT

We shall characterize the countable models M, with only countably many expansions by a one place predicate.

The theorem we shall prove here is:

THEOREM 1. Let M be a countable model, then the following conditions are equivalent:

(P1) the number of (M, P) $(P \subseteq |M|)$ up to isomorphism is \aleph_0 .

(P2) the number of (M, P) $(P \subseteq |M|)$ up to isomorphism is $< 2^{k_0}$.

(P3) there are finite models, N_0 , N_1 such that M is a reduction of a definable expansion of $N_0 + \sum_{n < \omega} N_1$. (See Definition 0 for the definition of sum of models.)

The consideration of condition (P1) was suggested by Stavi [6], when investigating whether in a Fraenkel-Mostowski model (of set theory) the free Boolean algebra generated by the atoms is a set. He asked whether the number of (M, P) ($P \subseteq |M|$) up to isomorphism can be \aleph_1 and $\aleph_1 < 2^{\aleph_0}$ — so the answer is negative.

Clearly if we replace one-place predicate by a two-place predicate, the number of (M, P) is always 2^{\aleph_0} .

PROBLEM. For a model M of cardinality λ , what can be $|\{(M, P) | \cong : P \subseteq |M|\}|$ and is there a characterization similar to Theorem 1?

Our method is somewhat similar to Shelah [4], and the result was proved by Shelah and announced in [5]. Then Litman shortened the proof by half using the same technique.

⁺ The second author is thankful for NSF Grant 43901, by which he was partially supported. Received April 30, 1975 and in revised form November 29, 1976.

DEFINITION 0. (A) Let $\{M_i \mid i \in I\}$ be an indexed family of models in the same language L such that

1) The models $\{M_i \mid i \in I\}$ have disjoint domains.

2) L contains no functions or constants.

We define $M = \sum_{i \in I} M_i$ where M is a model of the same language L, the domain of M is the union of the domains of $\{M_i \mid i \in I\}$ and for any atomic relation R, M = R (a_1, \dots, a_n) iff a_1, \dots, a_n all belong to the same model, say M_J , and $M_J = R(a_1, \dots a_n)$.

(B) For two models M_1 , M_2 define $M_1 + M_2 = \sum_{i \in \{1,2\}} M_{i}$.

PROOF OF THEOREM 1. It is clear that $(P3) \Rightarrow (P1) \Rightarrow (P2)$, so from now on we shall assume (P2), and eventually prove (P3), by a series of observations.

Let |M| be the universe of M, a, b, c, elements of |M|, \bar{a} , \bar{b} , \bar{c} a finite sequence of such elements. Let L be the first-order language associated with M.

 $tp(a_1, \dots, a_n) = \{\varphi(x_1, \dots, x_n) \mid M \models \varphi(a_1, \dots, a_n), \varphi \text{ contains no parameters} \}.$

We shall not distinguish strictly between a sequence \bar{a} and its range.

OBSERVATION 1. Any expansion of M by finitely many individual constants satisfies conditions (P2).

The proof is trivial.

DEFINITION 1. $\langle a_1, a_2, \cdots, a_n \rangle \cong {}_n \langle b_1, b_2, \cdots, b_n \rangle$ iff $\langle M, a_1, a_2, \cdots, a_n \rangle \cong \langle M, b_1, b_2, \cdots, b_n \rangle$.

PROOF. If \cong_1 has infinitely many equivalence classes, we clearly have 2^{\aleph_0} non-isomorphic expansions. Assume that the statement is true for n-1 and that \cong_n has infinitely many classes, then there is a n-1 tuple \bar{a} and an infinite $D \subset |M|$ so that for every pair of distinct members of $D d, d' : \langle \bar{a}, d \rangle \not\cong_n \langle \bar{a}, d' \rangle$. Thus in the model $\langle M, \bar{a} \rangle \cong_1$ has infinitely many classes, contradiction.

OBSERVATION 3. The number of formulas $\varphi(x_0, \dots, x_n) \in L$ up to equivalence in M is finite. M is homogeneous, and the theory of M is categorical in \aleph_0 .

PROOF. Simple consequence of Observation 2.

REMARK. As $tp(\bar{a})$ is equivalent in M to a single formula $\varphi(\bar{x})$, we may assume that $tp(\bar{a})$ is a single formula.

The following fact will be used implicitly in this paper:

MODELS

OBSERVATION 4. Let $\Sigma(x_1, \dots, x_n)$ be a second-order formula in the language of M (i.e., its free second-order relations are atomic relations of M), then there is a first-order formula $\varphi(x_1, \dots, x_n)$ so that $M \models \forall x_1, \dots, x_n$ ($\varphi \equiv \Sigma$).

PROOF. Set $Q = \{ tp(a_1, \dots, a_n) | M \models \Sigma(a_1, \dots, a_n) \}$. Q is finite. Let $\varphi = \bigvee_{\tau \in Q} \tau$. As M is homogeneous, φ is equivalent to Σ .

OBSERVATION 5. There is no formula $\varphi(x, y)$ (φ may contain parameters), so that $\varphi(x, y)$ defines a linear order on any infinite set.

PROOF. Assume $\varphi(x, y)$ is a linear order on some infinite set. We can assume that $\varphi(x, y)$ contains no parameters (otherwise make them individual constants). Let τ be a countable order type. As M is the only model of Th(M) in \aleph_0 , there is $A \subset M$ so that $\langle A, \varphi(x, y) \rangle \cong \tau$ (one has to write a diagram which is consistent with Th(M)). As there are 2^{\aleph_0} countable order types, M has 2^{\aleph_0} expansions. Contradiction.

DEFINITION 2. (A) A system is an infinite ordered set $\langle I, \langle \rangle$, and a finite sequence of functions F_1, F_2, \dots, F_n s.t. $F_i: I^{k_i} \to |M|$.

(B) Let $\langle I, < \rangle$ be an ordered set and $\bar{\alpha} = \langle \alpha_1, \cdots, \alpha_n \rangle$ a sequence of members of *I*. Define $\operatorname{atp}(\bar{\alpha}) = \{x_i < x_j \mid \alpha_i < \alpha_j\} \cup \{x_i = x_j \mid \alpha_i = \alpha_j\}$ (atp $(\bar{\alpha})$ is the set of atomic relations satisfied by $\bar{\alpha}$).

(C) A system $\langle I, \langle \rangle, F_1, F_2, \cdots, F_n$ is *m*-homogeneous, if for any sequences $F_{i_1}, F_{i_2}, \cdots, F_{i_m}; \bar{\alpha}_1, \bar{\alpha}_2, \cdots, \bar{\alpha}_m; \bar{\beta}_1, \bar{\beta}_2, \cdots, \bar{\beta}_m$

$$\operatorname{tp}(F_{i_1}(\bar{\alpha}_1), F_{i_2}(\bar{\alpha}_2), \cdots, F_{i_m}(\bar{\alpha}_m)) \neq \operatorname{tp}(F_{i_1}(\bar{\beta}_1), F_{i_2}(\bar{\beta}_2), \cdots, F_{i_m}(\bar{\beta}_m))$$

implies $\operatorname{atp}(\bar{\alpha}_1, \bar{\alpha}_2, \cdots, \bar{\alpha}_m) \neq \operatorname{atp}(\bar{\beta}_1, \bar{\beta}_2, \cdots, \bar{\beta}_m)$.

(D) Two systems $\langle I, < \rangle, F_1, \dots, F_n$ and $\langle I', < \rangle, F'_1, \dots, F'_n$ are *m*-similar, if F_i and F'_i have the same number of places and for any sequences $i_1, i_2, \dots, i_m \leq n$; $\bar{\alpha}_1, \bar{\alpha}_2, \dots, \bar{\alpha}_m; \bar{\beta}_1, \bar{\beta}_2, \dots, \bar{\beta}_m$ so that $\bar{\alpha}_i \subset I$ and $\bar{\beta}_i \subset I'$ if

 $\operatorname{tp}(F_{i_1}(\bar{\alpha}_1), F_{i_2}(\bar{\alpha}_2), \cdots, F_{i_m}(\bar{\alpha}_m)) \neq \operatorname{tp}(F'_{i_1}(\bar{\beta}_1), F'_{i_2}(\bar{\beta}_2), \cdots, F'_{i_m}(\bar{\beta}_m)),$

then $\operatorname{atp}(\tilde{\alpha}_1, \tilde{\alpha}_2, \cdots, \tilde{\alpha}_m) \neq \operatorname{atp}(\bar{\beta}_1, \bar{\beta}_2, \cdots, \bar{\beta}_m).$

(It is clear that if any two systems are m-similar then both are m-homogeneous.)

OBSERVATION 6. Let $\langle I, < \rangle$, F_1, \dots, F_n be a system, then for any $m < \omega$, there is an infinite $I' \subset I$ so that the system $\langle I', < \rangle$, $F_1 \upharpoonright I', F_2 \upharpoonright I', \dots, F_n \upharpoonright I'$ is *m*-homogeneous.

PROOF. By the Ramsey theorem [3] and Observation 2.

OBSERVATION 7. Let $\langle I, < \rangle$, F_1, \dots, F_n be an *m*-homogenous system and $\langle I^*, < \rangle$ any countable ordered set, then there are F_1^*, \dots, F_n^* such that the system $\langle I^*, < \rangle$, F_1^*, \dots, F_n^* is *m*-similar to $\langle I, < \rangle$, F_1, \dots, F_n .

PROOF. One has to write a diagram which is consistent with Th(M). As M is the only model of Th(M) in \aleph_0 , this diagram is realized in M.

DEFINITION 3. (A) "For almost all $x \cdots$ " will mean "For all x, except for finitely many, \cdots "

(B) For $a, b \in |M|$ define E (a, b) = For almost all d, tp(a, d) = tp(b, d)).

DEFINITION 4. Let $A, B \subset |M|$. A and B are separable if there is a formula $\varphi(x)$ (φ may contain parameters) s.t. $a \in A \Rightarrow \varphi(a)$ and $b \in B \Rightarrow -\varphi(b)$.

OBSERVATION 8. E is an equivalence relation and has finitely many equivalence classes.

PROOF. Clearly, *E* is an equivalence relation. Assume *E* has infinitely many classes. Let $\langle Q, < \rangle$ be the rationals. There is a system $\langle Q, < \rangle$, $a_{\alpha}, b_{\alpha,\beta,\gamma}$ for $\alpha, \beta, \gamma \in Q$ s.t. for any $\alpha \neq \beta$, $\gamma \neq \delta$; $tp(a_{\alpha}, b_{\alpha,\beta,\gamma}) \neq tp(a_{\beta}, b_{\alpha,\beta,\gamma})$ and $b_{\alpha,\beta,\gamma} \neq b_{\alpha,\beta,\delta}$. From Observations 6 and 7, we can assume that this system is 2-homogenous.

CLAIM. There is a system $\langle \omega, \langle \rangle$, $c_i, d_{i,j}, i, j \in \omega$, such that:

- (1) This system is 2-homogenous,
- (2) $\operatorname{tp}(c_1, d_{1,0}) \neq \operatorname{tp}(c_0, d_{1,0}),$

(3) For any $m, n, i, j, k \in \omega, n \neq m$: $d_{i,n} \neq d_{i,m}, tp(c_k, d_{n,i}) = tp(c_k d_{n,j})$ and $tp(d_{m,i}, d_{n,j}) = tp(d_{m,i}, d_{n,k})$.

PROOF. Let $\alpha_i, i \in \omega$ be an increasing sequence of rationals, and for each $i \in \omega$ let $\beta_{i,k}, k \in \omega$ be an increasing sequence of rationals in the interval (α_1, α_{i+1}) . Define $c_i^* = a_{\alpha_i}, b_{i,j}^* = b_{\alpha_i,\alpha_{i+1},\beta_{i,j}}$. We have $\operatorname{tp}(c_i^*, b_{i,j}^*) \neq \operatorname{tp}(c_{i+1}^*, b_{i,j}^*)$.

Case 1. $tp(c_1^*, b_{1,1}^*) \neq tp(c_0^*, b_{1,1}^*)$. Set $c_i = c_{2i}^*, d_{i,j} = b_{2i,j}^*$.

Case 2. $\operatorname{tp}(c_2^*, b_{1,1}^*) \neq \operatorname{tp}(c_0^*, b_{1,1}^*)$. Set $c_i = c_{2i}^*, d_{i,j} = b_{2i-1,j}^*$. We leave the verification of clauses (1), (2), (3) of the claim to the reader.

Let $\tau = tp(c_0, d_{0,0})$.

Case 1. The sets $\{c_i | i \in \omega\}$, $\{d_{i,j} | i, j \in \omega\}$ are separable, by a formula φ $(\varphi(c_i) \text{ and } \sim \varphi(d_{i,j}) \text{ for all } i, j)$. Let $F : \omega \to \omega$ be any function satisfying $F(i) > \sum_{j < i} F(j)$, then there is $A \subset \{c_i | i < \omega\} \cup \{d_{i,j} | i, j < \omega\}$ such that MODELS

$$\{\|\{d: d \in A, \sim \varphi(d), \tau(c, d)\}\|: c \in A \text{ and } \varphi(c)\} = \operatorname{Range}(F).$$

Clearly this is a contradiction to (P2).

Case 2. The sets $\{c_i\}$ and $\{d_{i,j}\}$ are not separable. We can assume that the system $\langle \omega, \langle \rangle$, $a_i, b_{i,j}$ can be extended to a 2-homogeneous system on $\langle \omega + 1, \langle \rangle$ (otherwise we take another system by Observation 7). By Observation 5, $tp(c_0, c_{\omega}) = tp(c_{\omega}, c_0)$, otherwise $tp(c_0, c_{\omega})$ would order the set $\{c_i | i < \omega\}$. $tp(c_0, c_{\omega}) = tp(c_0, d_{\omega,0})$, or else $\{c_i\}, \{d_{i,j}\}$ would be separable by a formula with the parameter c_0 . For the same reasons we have

$$tp(c_0, c_{\omega}) = tp(c_{\omega}, d_{0,0}) = tp(d_{\omega,0}, d_{0,0}).$$

In conclusion, for any $x, y \in \{c_i\} \cup \{d_{i,j}\}$, if $\tau(x, y)$ then there exists an n s.t. $x, y \in \{c_n, d_{n,i} \mid i < \omega\}$. For any $A \subset \{c_i\} \cup \{d_{i,j}\}$ let $\psi_A(x, y) = (x, y \in A \text{ and} \tau(x, y) \text{ or } \tau(y, x))$ and let φ_A = the transitive closure of ψ_A . Let E_q be any equivalence relation on ω , then it is possible to construct a set $A \subset \{c_i\} \cup \{d_{i,j}\}$ s.t. $\langle A, \varphi_A \rangle \cong \langle \omega, E_q \rangle$. Contradiction to (P2).

OBSERVATION 9. The relation "x is algebraic over y" is an equivalence relation on the non-algebraic elements of M.

PROOF. Transitivity and reflexivity are trivial. So assume we have a algebraic over b, b not algebraic over a and a not algebraic. Let $N < \omega$ be such that for all $d \in |M|$, $\langle M, d \rangle$ has less than N algebraic elements (such an N exists by Observation 3). As tp(a) is not algebraic and E has finitely many classes, there is a sequence a_1, a_2, \ldots, a_N such that $tp(a_i) = tp(a)$ and E (a_i, a_i) for all $i, j \leq N$. For almost all d we have $tp(a_i, d) = tp(a_i, d)$. As for infinitely many d, $tp(a_i, d) =$ tp(a, b), then there is a d such that $tp(a_i, d) = tp(a, b) \forall i$. Thus, there are at least N algebraic elements over d. A contradiction.

OBSERVATION 10. If a is algebraic over (b, c) then either a is algebraic over b or a is algebraic over c.

PROOF. Assume *a* is algebraic over $\langle b, c \rangle$ but not algebraic over any single one of them. By Observation 9 (in the models $\langle M, b \rangle$ and $\langle M, c \rangle$) *b* is algebraic over $\langle a, c \rangle$ and *c* algebraic over $\langle a, b \rangle$. As tp(*a*) is not algebraic, and *b* not algebraic over *a*, there is a system $\langle Q, < \rangle$, $a_{\alpha}, b_{\alpha,\beta}, c_{\alpha,\beta}$ s.t. tp($a_{\alpha}, b_{\alpha,\beta}, c_{\alpha,\beta}$) = tp(*a*, *b*, *c*), and for $\gamma \neq \delta$: $a_{\gamma} \neq a_{\delta}$ and $b_{\alpha,\gamma} \neq b_{\alpha,\delta}$. By Observations 6, 7 we can assume that this system is 3-homogeneous. For every $\gamma \neq \delta$, $c_{\alpha,\gamma} \neq c_{\alpha,\delta}$, or else we have infinitely many elements algebraic over the pair $\langle a_{\alpha}, c_{\alpha,\delta} \rangle$. Set W = $\{a_{\alpha}, b_{\alpha,\beta}, c_{\alpha,\beta} \mid \alpha, \beta \in Q\}$, $\varphi(x, y, z) = "x$ is algebraic over $\langle y, z \rangle$ and $x \neq y \neq z"$. An easy check yields that for distinct $x, y, z \in W$, $\varphi(x, y, z)$ if $\exists \alpha, \beta, x, y, z \in \{a_{\alpha}, b_{\alpha, \beta}, c_{\alpha, \beta}\}$ (in any other case, there will be infinitely many elements algebraic over the same pair). For $A \subset W$ define $\psi_A(xy) = "x, y \in A$ and $\exists z \in A \varphi(x, y, z)$ ". Let Eq be any equivalence relation on ω , whose equivalence classes have an odd number of elements, then one can build $A \subset W$ s.t. $\langle A, \bar{\psi}_A(x, y) \rangle \cong \langle \omega, \text{Eq} \rangle$ where $\bar{\psi}_A$ is the transitive closure of ψ_A . Contradiction to (P2).

OBSERVATION 11. If E(a, b) and d is not algebraic over a and b then tp(a, d) = tp(b, d).

PROOF. Trivial.

OBSERVATION 12. For any a, b, such that neither is algebraic over the other, tp(a, b) depends only on the E equivalence classes of a and b.

PROOF. Let a', b' be another pair s.t. neither is algebraic over the other and E(a, a') and E(b, b'). If a = a' then tp(a, b) = tp(a', b') by Observation 11. Otherwise, there is a d such that E(b, d) and d not algebraic over a and a' (the E class of b is infinite because b is not algebraic), so we have tp(a, b) = tp(a, d) = tp(a', b').

DEFINITION 5. $E^{a}(x, y) =$ "For almost all z, tp(a, x, z) = tp(a, y, z)" (i.e. E^{a} is the formula E defined in the model $\langle M, a \rangle$).

OBSERVATION 13. For nonalgebraic elements a, b and for c nonalgebraic over $\langle a, b \rangle$, $E^{c}(a, b) \Leftrightarrow E(a, b)$.

PROOF. Assume E(a, b) and $\sim E^{c}(a, b)$, we may assume that a, b are not algebraic one over the other (or else take some d in the same E equivalence class which is not algebraic over a, b, then $\sim E^{c}(d, b) \cup \sim E^{c}(d, a)$). By Observation 12, for any d, e which belong to the E equivalence class and are not algebraic one over the other, tp(a, b) = tp(d, e). Thus there is a system $\langle Q, < \rangle$, $a_{\alpha}, c_{\alpha,\beta,\gamma}$ s.t. $\sim E^{c_{\alpha,\beta,\gamma}}(a_{\alpha}, a_{\beta})$, and for $\gamma \neq \delta$: $a_{\gamma} \neq a_{\delta}$ and $c_{\alpha,\beta,\gamma} \neq c_{\alpha,\beta,\delta}$. Furthermore, we can assume that this system is 3-homogeneous. Let e be any $c_{\kappa,\lambda,\mu}$. As E^{e} has finitely many classes, and by the 3-homogeneity, all $a_{\sigma}, \sigma < \min\{\kappa, \lambda, \mu\}$, are E^{e} equivalent. Let $0 < \alpha < \beta$, then for infinitely many $e, E^{e}(a_{0}, a_{\alpha})$ and $\sim E^{e}(a_{0}, a_{\beta})$ (one of the sets $\{c_{\beta,\beta+1,\gamma} | \gamma > \beta + 1\}$ or $\{c_{\frac{1}{2}(\alpha+\beta),\beta,\gamma} | \gamma > \beta\}$ will be appropriate). Hence, in the model $\langle M, a_{0} \rangle$, $\sim E^{a_{0}}(a_{\alpha}, a_{\beta})$ for $0 < \alpha < \beta$, a contradiction to Observation 8.

OBSERVATION 14. For $\bar{a} = \langle a_1, a_2, \dots, a_n \rangle$ s.t. no a_i is algebraic over the others, $tp(\bar{a})$ depends only on the *E* equivalence classes of the a_i .

MODELS

PROOF. Let $\bar{a}' = \langle a'_1, \dots, a'_n \rangle$ such that no a'_i is algebraic over the others and $E(a_i, a'_i)$, we have to show that $tp(\bar{a}) = tp(\bar{a}')$. Assume the theorem is true for n-1. Now if $a'_1 = a_1$, $tp(\bar{a}) = tp(\bar{a}')$ by the induction hypothesis in the model $\langle M, a_1 \rangle$ and by Observation 13; otherwise take d which is not algebraic over \bar{a}, \bar{a}' and $E(d, a_1)$. We have $tp(\bar{a}) = tp(d, a_2, \dots, a_n) = tp(d, a'_2, \dots, a'_n) = tp(\bar{a}')$.

DEFINITION 6. (A). Let K be the maximum cardinality of the equivalence classes "x algebraic over y". A sequence \bar{a} is special if its length is K and its range is an equivalence class of "x algebraic over y".

(B). \overline{Z} separates the two "specials" $\overline{a}, \overline{b}$ if $tp(\overline{a}, \overline{Z}) \neq tp(\overline{b}, \overline{Z})$.

(C). Two "specials" \bar{a}, \bar{b} are separable if there is a \bar{Z} (not necessarily special) s.t. \bar{Z} separates \bar{a} and \bar{b} , and $\bar{Z} \wedge (\bar{a} \cup \bar{b}) = \emptyset$.

Assumption. (W.L.O.G.) All the algebraic elements of M are individual constants.

OBSERVATION 15. There is a \overline{Z} which separates any pair of separable "specials".

PROOF. Let $a_i, i < n$ be a sequence of elements s.t. no a_i is algebraic over the others, and each E class contains two elements of this sequence. For i, j < n there is $\overline{Y}_{i,j}$ s.t. for any two "specials" \overline{a}_i which contains a_i and \overline{a}_j which contains a_j , if $\overline{a}_i, \overline{a}_j$ are separable, then $\overline{Y}_{i,j}$ separates them, and $\overline{Y}_{i,j} \land (\overline{a}_i \cup \overline{a}_j) = \emptyset$. We may assume that $\overline{Y}_{i,j}$ is algebraicly closed. Let \overline{s} be minimal s.t. $\overline{Y}_{i,j}$ = algebraic closure of \overline{s} , then tp (a_i, a_j, \overline{s}) contains the statement "The algebraic closure of \overline{s} separates all separable specials $\overline{b}, \overline{c}$ s.t. \overline{b} contains a_i and \overline{c} contain an element which is E-equivalence to a_i , and \overline{c} contain an element which is E-equivalence to a_i . Set $\overline{Z} = \bigcup \overline{Y}_{i,j}$.

DEFINITION 7. For any "specials" $\bar{a}, \bar{b} : E^*(\bar{a}, \bar{b}) = \tilde{a}, \bar{b}$ are not separable".

OBSERVATION 16. E^* is an equivalence relation on the special sequence, that has finitely many classes.

PROOF. By Observation 15 E^* has finitely many classes. Thus all we have to show is that E^* is transitive. Assume $E^*(\bar{a}, \bar{b})$, $E^*(\bar{b}, \bar{c})$. It is sufficient to find an \bar{x} s.t. $tp(\bar{x}) = tp(\bar{Z})$ (\bar{Z} of Observation 15) and \bar{x} does not separate \bar{a} and \bar{c} . Since \bar{Z} contains no algebraic elements, by application of Observation 14 there is \bar{x} , $tp(\bar{x}) = tp(\bar{Z})$ and $\bar{x} \wedge (\bar{a} \cup \bar{b} \cup \bar{c}) = \emptyset$. As \bar{x} does not separate the pair $\langle \bar{a}, \bar{b} \rangle$ and $\langle \bar{b}, \bar{c} \rangle$, it does not separate the pair $\langle \bar{a}, \bar{c} \rangle$. OBSERVATION 17. Let $\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n$ be a sequence of pairwise disjoint "specials", then tp $(\bar{a}_1, \dots, \bar{a}_n)$ depends only on the E^* equivalence classes of the \bar{a}_i .

PROOF. Let $\overline{b}_1, \dots, \overline{b}_n$ be another sequence of pairwise disjoint "specials" and $E^*(\overline{a}_i, \overline{b}_i)$. If for all $i \ge 2$ $\overline{a}_i = \overline{b}_i$ then by definition of E^* tp $(\overline{a}_1, \dots, \overline{a}_n) =$ tp $(\overline{b}_1, \dots, \overline{b}_n)$, otherwise we can find a sequence of interpolants between $\langle \overline{a}_1, \dots, \overline{a}_n \rangle$ and $\langle \overline{b}_1, \dots, \overline{b}_n \rangle$.

THEOREM. M satisfies (P3).

PROOF. First let us assume for simplicity that M contains no algebraic elements, and there is one E^* -equivalence class e s.t. any special $\langle a_1, \dots, a_n \rangle$ has a permutation $\langle b_1, \dots, b_n \rangle$ which belongs to e. Choose any $\langle b_1, \dots, b_n \rangle \in e$. Define the model N_1 by $N_1 = \langle \{b_1, \dots, b_n\}, \equiv, R_i \rangle i \leq n$ where:

1) $b_i \equiv b_J$ for any i, J.

2) $R_i(b_J)$ iff i = J.

Clearly *M* is isomorphic to a reduct of a definable expansion of $\sum_{i<\omega} N_i$. If more than one equivalence class of E^* is needed, we get *M* a definable expansion of $\sum_{J=1}^{k} (\sum_{i<\omega} N_J) \cong \sum_{i<\omega} \overline{N}$ where $\overline{N} = N_1 + N_2 + \cdots + N_k$. If there are algebraic elements, they constitute N_0 .

REFERENCES

1. P. Erdos and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 44 (1969), 467-474.

2. H. J. Keisler, Infinitary Languages, North-Holland Publ. Co., Amsterdam, 1971.

3. F. D. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1929), 338-384.

4. S. Shelah, There are just four second-order quantifiers, Israel J. Math. 15 (1973), 282-300.

5. S. Shelah, Various results in mathematical logic, Notices Amer. Math. Soc. 22 (1975), A-23.

6. J. Stavi, Free complete Boolean algebras and first order structures, Notices Amer. Math. Soc. 22 (1975), A-326.

INSTITUTE OF MATHEMATICS THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL

AND

DEPARTMENT OF MATHEMATICS STANFORD UNIVERSITY STANFORD, CALIFORNIA, USA